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Axisymmetric steady flows driven by an electric field about a deformable fluid drop 
suspended in an immiscible fluid are studied within the framework of the leaky 
dielectric model. Deformations of the drop and the flow fields are determined by 
solving the nonlinear free-boundary problem composed of the Navier-Stokes system 
governing the flow field and Laplace’s system governing the electric field. The 
solutions are obtained by using the Galerkin finite-element method with an elliptic 
mesh generation scheme. Under conditions of creeping flow and vanishingly small 
drop deformations, the results of finite-element computations recover the asymptotic 
results. When drop deformations become noticeable, the asymptotic results are often 
found to underestimate both the flow intensity and drop deformation. By tracking 
solution branches in parameter space with an arc-length continuation method, curves 
in parameter space of the drop deformation parameter D versus the square of the 
dimensionless field strength E usually exhibit a turning point when E reaches a 
critical value E,. Along such a family of drop shapes, steady solutions do not exist 
for E > E,. The nonlinear relationship revealed computationally between D and E 2  
appears to be capable of providing insight into discrepancies reported in the literature 
between experiments and predictions based on the asymptotic theory. In some 
special cases with fluid conductivities closely matched, however, drop deformations 
are found to grow with E 2  indefinitely and no critical value E, is encountered by 
the corresponding solution branches. For most cases with realistic values of physical 
properties, the overall electrohydrodynamic behaviour is relatively insensitive to effects 
of finite-Reynolds-number flow. However, under extreme conditions when fluids of 
very low viscosities are involved, computational results illustrate a remarkable shape 
turnaround phenomenon: a drop with oblate deformation at low field strength can 
evolve into a prolate-like drop shape as the field strength is increased. 

1. Introduction 
When a fluid drop is suspended in another immiscible fluid, it can be influenced by 

an externally applied uniform electric field in many ways. If the fluids are considered 
as perfectly insulating dielectrics and no free charges are present at the fluid interface, 
or if, on the other hand, the drop contains a fluid that is highly conducting while 
the surrounding fluid is insulating, an electric field induces a net force at the fluid 
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interface as a result of discontinuity in the electric field (cf. Melcher & Taylor 1969; 
Melcher 1981). Such an electric surface force always acts perpendicularly to the drop 
interface and points from the fluid of higher dielectric constant, or the conducting 
fluid, toward the fluid of lower dielectric constant, or the insulating fluid. Because 
this electric surface force acts only in the direction normal to the interface, it can 
be mechanically balanced by a uniform interfacial tension. Therefore, the fluids can 
remain motionless with the drop surface always being statically elongated in the 
direction of the electric field into a prolate shape. These ideal situations of electrified 
drops have been extensively studied within the well-established theoretical framework 
of electrohydrostatics (cf. O’Konski & Thacher 1953; Garton & Krasucki 1964; Taylor 
1964; Rosenkilde 1969; Miksis 1981; Adornato & Brown 1983; Basaran & Scriven 
1989). However, neither perfectly insulating fluids nor perfectly conducting fluids 
(except the superconductors formed at very low temperature) are found in the real 
world. Most applications deal with fluids of finite electrical conductivity. 

The problem becomes more interesting yet complicated when finite conductivity 
of fluids is considered. Perhaps one of the most remarkable phenomena is the 
finding that, in addition to the prolate shape predicted by the electrohydrostatic 
theory, a drop in an electric field may be maintained in a spherical shape or even 
be deformed into an oblate spheroid as observed in many experiments (Buchner & 
Van Royen 1929; Bungenberg de Jong & Hoskam 1941; Allen & Mason 1962). 
Extending the electrohydrostatic theory to include the effects of finite conductivity 
of fluids, O’Konski & Harris (1957) suggested a mathematical expression, which, 
although incorrect, indicates the existence of conditions under which the drop might 
remain spherical or become an oblate spheroid. Taylor (1966) recognized that finite 
conductivity enables electrical charge to accumulate at the drop interface, permitting 
a tangential electric stress to be generated. The tangential electric stress drags 
fluids into motion, generating hydrodynamic stresses at the drop interface. The 
intricate interplay between the electric and hydrodynamic stresses can produce either 
oblate or prolate drop deformations, and can also maintain a spherical drop. The 
electrohydrodynarnic theory proposed by Taylor (1966) is based on what came to be 
known as the leaky dielectric model, which is capable of predicting drop deformations 
in qualitative agreement with previous experimental observations. 

However, extensive experiments conducted later by Torza, Cox & Mason (1971) 
showed serious quantitative discrepancy with Taylor’s theoretical prediction. Drops 
were found to be consistently more deformed than would be expected from the 
theoretical prediction, in many cases by as much as a factor of two to four. To 
resolve the quantitative discrepancy between theory and experiment, the linearized 
asymptotic model of Taylor (1966) was extended to include higher-order terms by 
Ajayi (1978). Although Ajayi’s more accurate theory indicates an increase in drop 
deformations, the higher-order correction was found to be insufficient to fully remove 
the discrepancy. To examine the issue of electrokinetic effects raised by Torza et 
al. (1971), the leaky dielectric model was replaced by an electrokinetic model of 
charge transport (Baygents & Saville 1989). Even though the microscale motions and 
diffused charge layers are more accurately described, the calculated drop deformation 
turns out to be exactly the same as that given by the leaky dielectric model. Thus, 
the leaky dielectric model is verified to be the correct lumped-parameter model when 
no net charge exists on the drop. Since none of the obvious theoretical extensions 
seemed to be able to resolve the serious discrepancy, Vizika & Saville (1992) carried 
out a further experimental investigation. Their results appeared to agree with the 
asymptotic leaky dielectric prediction better than previous experiments, although 
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certain discrepancies remain for some cases. Still, no consistent explanations have been 
provided for the lack of quantitative agreement between the leaky dielectric theory and 
experiment. 

The experiments on the electrohydrodynamic behaviour of drops have been re- 
stricted to a small range of fluid properties because of the requirement of matching 
fluid densities necessary to avoid significant drop migrations driven by buoyancy. Ac- 
curate measurement and control of the electrical conductivity of weakly conductive 
fluids are difficult. On the other hand, for the sake of tractablility with conventional 
mathematical tools, the analytical solutions to date have been restricted to creep- 
ing flows around drops with small deformations in an infinitely extended domain. 
State-of-the-art computational techniques, however, have not yet been utilized to 
systematically gain further insights into the apparent discrepancy between the leaky 
dielectric theory and experiment. The greatest advantages of computational analyses 
lie in the fact that most of the restrictions introduced in the previous theoretical anal- 
yses to avoid severe nonlinearities can be removed, and physical parameters can easily 
be varied in an independent fashion, which is often difficult or impossible in a labo- 
ratory experiment. To make use of such advantages, this work is devoted to using the 
Galerkin finite-element method (cf. Strang & Fix 1973) to conduct a computational 
analysis of electrohydrodynamic behaviour of drops using the leaky dielectric model. 
By virtue of the generality of the numerical scheme, finite-Reynolds-number flows 
and large deformations of the drop interface can be examined systematically. The 
geometry of the problem domain can also be easily arranged to better approximate 
the realistic experimental situation. 

Apart from basic scientific interest, knowledge of the electrohydrodynamics of drops 
has been playing an increasingly important role in practical applications. For example, 
some of the early studies were motivated by the importance of electrohydrodynamic 
deformation of drops in birefringence, light scattering, and other optical measurements 
of emulsion systems (cf. O’Konski & Thacher 1953; O’Konski & Harris 1957). More 
recent practical interest is associated with the processes in which enhancement of the 
rate of mass or heat transfer between drops and their surrounding fluid is desired 
(cf. Thornton 1968; Harker & Ahmadzadeh 1974; Bailes 1981; Baird 1983; Scott 
1989; Weatherley 1992; Ptasinski & Kerkhof 1992; He, Baird & Chang 1993). Taking 
in account circulatory flows generated by an applied electric field, Morrison (1977) 
and Griffiths & Morrison (1979) evaluated transfer rate enhancement and found 
significant electroconvective effects for stationary drops. The numerical investigation 
of the electrohydrodynamic effects in transfer rate enhancement for spherical drops 
has been extended further to include both buoyancy-driven flows (Chang, Carleson 
& Berg 1982; Chang & Berg 1983) and interfacial tension gradients (Chang & Berg 
1985). In the present work, we focus on the pure electrohydrodynamic effects on 
deformable drops under neutrally buoyant conditions, leaving other complications 
for future research. 

It should be noted that some numerical computations have been performed on 
deformable leaky dielectric drops. For example, in investigating breakup modes of 
electrified drops, Sherwood (1988) considered finite conductivity effects and performed 
boundary-integral computations for prolate drops with the creeping-flow approxima- 
tion. Besides dynamic details of the drop breakup process, Sherwood also presented 
steady prolate deformations of leaky dielectric drops for one case where highly de- 
formed drops can maintain stable shapes under large electric field strength. In a 
study of electrohydrodynamic circulations inside and outside a neutrally suspended 
deformable drop, Tsukada et al. (1993) conducted computations with a finite-element 
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scheme that is somewhat similar to the one described in this work. Based on limited 
results, these authors claimed that their finite-element computations were in good 
agreement with Taylor's analytical results and their own experiments. Later, Tsukada 
et al. (1994) also reported some results for a leaky dielectric system with a drop 
moving in a quiescent liquid at small Reynolds number. However, none of these 
papers (i.e. Sherwood 1988; Tsukada et al. 1993, 1994) clearly addressed the issue of 
the quantitative discrepancy between Taylor's asymptotic theory and experiment. 

One of the goals of this work is to establish a general relationship between drop 
deformations and applied electric field strength, based on numerical solutions of the 
mathematical system of the leaky dielectric model with minimal simplifying assump- 
tions. Furthermore, this work also attempts to provide new insights into the com- 
plicated nonlinear behaviour of deformable drops with electrohydrodynamic flows, 
by exploring new phenomena that have not yet been observed in experiments. In $2 
we present the nonlinear mathematical system of equations and boundary conditions 
that govern the steady electrohydrodynamic flow about a leaky dielectric drop driven 
by an externally applied electric field. The Galerkin finite-element methodology for 
discretizing and solving the free-boundary problem is described in $3. The solutions 
at the limit of creeping flow are analysed in 54, where the accuracy of computational 
results is verified by comparison with the asymptotic theory of Taylor (1966) for 
small drop deformations. The stability of drop shapes with respect to axisymmetric 
disturbances is inferred by considering the connectivity of the shape families (Iooss 
& Joseph 1990; Ungar & Brown 1982), which are efficiently tracked in parameter 
space with arc-length continuation methods (e.g. Keller 1977; Abbott 1978). With 
the numerical scheme of the Galerkin finite-element method, electrohydrodynamic 
flows at finite Reynolds number are investigated in $5, where dramatic changes in the 
electrohydrodynamic drop behaviour are explored. In $6, electric field distributions 
around drops and their relationship to the electrohydrodynamic flow intensity are 
discussed. A comparison of the computational results with the experimental data is 
presented in $7. With realistic values of fluid properties, the computational curves 
in parameter space show deviation from the asymptotic lines to capture the general 
trend of the experimental data. Finally in $8, we conclude with a discussion of the 
new findings obtained by the present computational analysis and offer suggestions 
for future research. 

2. Mathematical formulation 
We consider an axisymmetric fluid drop of volume $nu3, viscosity pi, electrical 

conductivity ci, and dielectric constant I C ~ ,  suspended in an immiscible fluid of viscosity 
po, electrical conductivity co, and dielectric constant IC,. The drop is situated in the 
middle of a parallel-plate capacitor and is subjected to an electric field in the axial 
direction generated by imposing a voltage difference between the capacitor plates, 
which are separated by a distance L (figure 1). The densities of the two fluids are 
identical, denoted by p, so that the drop is under neutrally buoyant conditions even 
in an Earth-bound laboratory. The interface separating the two fluids has constant 
interfacial tension y .  Variables are made dimensionless by measuring lengths in units 
of the radius of the undeformed spherical drop a, electrical potential I/ in units of 
(ya/eo)'/*, with €0 denoting the permittivity of vacuum, and velocity u in units of 
a characteristic velocity U defined later by (2.15) as the maximum surface velocity 
calculated from the creeping-flow solution for a spherical drop (Taylor 1966). In 
what follows, the subscript o denotes variables associated with the fluid outside the 
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L 

FIGURE 1. Schematic of the problem description: a drop neutrally buoyant in an immiscible fluid is 
subjected to a uniform electric field at the middle of a parallel-plate capacitor. 

drop and the subscript i denotes those associated with the fluid inside the drop. The 
variables without subscript o or i apply in either phase. 

The electric field E = -VV is determined by solving the steady-state equation of 
charge conservation, 

where J = -(o/o,)VV is the dimensionless electrical current density due to ohmic 
conduction. In this work, the convection of charge by fluid flow is assumed to 
be negligible, following Taylor’s treatment (1966), which is generally valid for the 
situation of very small electric Reynolds number, i.e., qlcU/(aa) << 1 (cf. Melcher 
& Taylor 1969; Melcher 1981). Because the conductivities oi and go are constants, 
equation (2.1) becomes Laplace’s equation for V in each fluid region. 

At the drop interface, the requirements of continuity of the tangential component 
of the electric field and that of the normal component of the electrical current density, 
as consistent with charge conservation when charge convection by flow is neglected, 
are described by the boundary conditions 

V - J  =O,  (2.1) 

gi V ,  = V, and - n - V V ,  = n . V V ,  on Sdrop ,  

where n is the local unit normal vector to the boundary. The continuity of the normal 
component of the current density does not prevent the surface charge from appearing 
at the drop interface; instead, it ensures that the amount of local surface charge 
does not vary with time. In the present formulation, surface charge does not appear 
explicitly anywhere, because the equations are written in terms of the current density 
instead of electric displacement. 

At the capacitor plates located at z = L/2 and z = -L/2, constant electric 
potentials are imposed in the form of Dirichlet boundary conditions as 

(2.3) 
L L 

V,=-E- on S+ and V , = E -  on S-.  
2 2 

Moreover, a Neumann boundary condition for the electric field is applied along 
the axis of symmetry and the asymptotic boundary, 

n * V V  = 0 on Ssym and Sasymp-  (2.4) 
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Unlike the usual boundary-value problems in electrostatic theory where the domain 
shapes are known a priori, the electric field around the deformable drop cannot be 
determined unless the shape of the drop interface is described. In the present free- 
boundary problem, the drop shape can be influenced by stresses arising from both 
the electric field and fluid flows. Hence, the equations describing fluid flows must be 
considered simultaneously. 

The incompressible fluid motions in both phases are governed by the steady 
Navier-Stokes equations 

Re u-Vu = V -  T, (2.5) 
and continuity equation 

v - u  = 0. 
Here Re = p a U / p o  is the Reynolds number of the flow outside the drop, and the 
hydrodynamic stress tensor for the exterior phase takes the form 

To = --pol + [Vu0 + (VU,)~], (2.7a) 

whereas the hydrodynamic stress tensor for the interior phase is given by 

(2.7b) 

where po  and pi are the pressures outside and inside the drop, and I is the identity 
tensor. The fluids here are assumed to be Newtonian with uniform viscosities. Both 
the stress and the pressure are measured in units of poU/a .  

At the drop interface, conservation of momentum is expressed by the traction 
boundary condition 

where Ca E p o U / y  is the capillary number, t is the local unit tangential vector to 
the boundary (in an azimuthal plane), and s is the arc-length along the boundary. 
Here n points into the drop and t points in the direction of increasing s that 
corresponds to increasing the polar angle measured from the negative z-axis ; therefore, 
n-dt/ds+(l/r)(dz/ds) is the sum of the local principal mean curvatures. The Maxwell 
stress tensor 

T ' = K ( E  E - i I E * E )  (2.9) 
accounts not only for the electric stresses that are attributable to free charges, but 
also for those due to polarization (cf. Melcher 8z Taylor 1969; Melcher 1981). 

The drop interface can be regarded as a material surface, provided there is no mass 
transfer across it. At steady state, the kinematic condition at the drop interface is 
then simply 

Also, the continuity of velocity at the drop interface requires 

n * u = 0 on &Top. (2.10) 

uo = ui on Sdrop .  (2.11) 

At the surface of capacitor plates, the fluid must obey no-slip and no-penetration 
conditions, 

u = 0 on S+ and S-.  (2.12) 
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Along the axis of symmetry, the symmetry conditions are exprected to be satisfied 

dz 
- = 0 at r = 0 on Sdrop, and e,e, : T =  e, * u = 0 on S s y m ,  (2.13) 
ds 

where e, and e, are unit vectors in the z- and r-directions, respectively. 
Far from the drop, the electrohydrodynamic flows should vanish, i.e. 

u + 0 and p -+ 0 on SasYmp as ?-A -+ 00. (2.14) 

The mathematical system defined by (2.1)-(2.14) involves the dimensionless param- 
eters Re,  Ca, Y = Ko/ici, 4 = polpi,  and 93 = ci/co, where the notation for dielectric 
constant ratio 9, viscosity ratio A, and conductivity ratio 9 is taken from Taylor’s 
original work (1966). Based on Taylor’s results for creeping flows around spherical 
drops, the maximum surface velocity, used here as the characteristic velocity in SI 
units (m s-l) for our non-dimensionalization, can then be written as 

(2.15) 

where E ,  as in (2.3), is the dimensionless strength of electric field measured in units 
of [rl(Eoa)11’2. 

3. Galerkin finite-element methodology 
The nonlinear free-boundary problem composed of (2.1)-(2.14) is solved numeri- 

cally by the Galerkin finite-element method. The solution is expedited by adopting 
special techniques developed for analysing viscous free-surface flows (cf. Kistler & 
Scriven 1983; Christodoulou & Scriven 1989, 1992; Christodoulou 1990; de Santos 
1991), and those for studying electrohydrostatic and magnetohydrostatic problems 
(cf. Basaran 1984; Boudouvis 1987; Boudouvis, Puchalla, & Scriven 1988; Basaran 
& Scriven 1989). The numerical code used in this work is modified and enhanced 
with respect to that previously developed for analysing electrostatic effects in coating 
flows (Feng & Scriven 1992, 1993). 

The axisymmetric problem domain depicted in figure 1 is subdivided into a set of 
quadrilateral elements (cf. Strang & Fix 1973), as shown in figure 2, with the elements 
adjacent to the centre of the drop having one side collapsed to a point at the origin 
in the physical space. On each element, which is mapped onto a unit square in the <,rj 
domain, the unknown values of the electric potential and velocity fields are expressed 
in an expansion of biquadratic basis functions, whereas the pressure field is expressed 
in an expansion of linear discontinuous basis functions, i.e. the discretization of the 
flow field is accomplished in the mixed interpolation sense (Huyakorn et al. 1978) 
to avoid overconstraint problems due to the nature of the continuity equation (2.6). 
To facilitate the simultaneous solution of the electric potential and flow fields with 
free interface deformations, an elliptic mesh generation scheme (Thompson, Warsi 
& Mastin 1985) developed by Christodoulou & Scriven (1992) and modified by de 
Santos (1991) is employed. In essence, this method determines the locations of the 
nodal or mesh points of the finite-element grids by solving a pair of elliptic partial 
differential equations 

where the ‘mesh diffusion’ coefficients Dc and D, are adjustable functions of position 
that can be prescribed to meet a desired distribution of nodal or mesh points in the 
problem domain. 

V*DrVt =0, V.D,Vrj = O ,  (3.1) 
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With the present computational scheme, Sasymp is positioned at a finite distance 
from the drop where the boundary conditions are not exactly known. However, it is 
often convenient to impose the boundary conditions 

n n  : V u = O  t n : V u = O ,  and p = O  on Sasymp,  (3.2) 

which can be readily restated as a Neumann boundary conditions in terms of stresses. 
Although the boundary conditions (3.2) seem to be somewhat ad hoc, any errors 
incurred on Sasymp should be inconsequential to the essential electrohydrodynamic 
behaviour, provided that r A  is located reasonably far away from the drop where the 
flow velocity is vanishingly small. Neumann boundary conditions corresponding to 
(3.2) are preferred here over the Dirichlet conditions given by (2.14) because numerical 
errors incurred at Sasymp are easily relaxed. 

To avoid variations in the drop volume that might arise from the inevitable presence 
of numerical errors, especially when the flow velocity vanishes at low electric field 
strength such that the kinematic condition (2.10) becomes trivial, we impose an 
equation of volume constraint 

4 
r -ds=  -. J Sdrop 2z 3 (3.3) 

This constraint requires an additional degree of freedom in the mathematical system, 
which is obtained by specifying a fixed value of pressure at one of the nodes inside 
the drop. This amounts to adding an undetermined pressure jump across the interface 
Apo in the interfacial boundary condition (2.8), with pressure level being set for the 
fluid outside the drop through the boundary condition (3.2). 

In a parallel-plate capacitor, the neutrally buoyant drop must be positioned exactly 
at the centre in order to maintain mechanical equilibrium. Unfortunately, such an 
equilibrium is unstable, i.e. the drop would drift toward one of the capacitor plates 
indefinitely should it deviate slightly from its equilibrium position. To prevent this 
kind of drift from destroying the steady-state solutions, we also require that the centre 
of mass of the drop remain at the coordinate origin 

r z- ds = 0. J Sdrop 2 :  
(3.4) 

With the constraint (3.4), another additional degree of freedom is required to complete 
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the mathematical description. The variable associated with this additional degree of 
freedom should represent some kind of force that prevents the drop from drifting and 
is vanishingly weak when the centre of mass of the drop approaches the coordinate 
origin. Our choice here is to define an artificial hydrostatic pressure that, in our 
dimensionless representation, appears to be an added term nzBo/Ca in the interfacial 
traction condition (2.8), where Bo = Apga2/y is the Bond number with g denoting the 
acceleration due to gravity. Thus, an artificial mismatch in fluid densities Ap always 
compensates for whatever errors arising from the numerical processes that cause the 
drop’s centre of mass to deviate from the coordinate origin. In fact, the magnitude of 
St determined by computations is always below our numerical error criterion for the 
convergence of solutions, e.g. 

If one takes advantage of the mirror symmetry with respect to the equatorial plane, 
the size of the computational problem can be reduced by one-half. Then, the condition 
(3.4) becomes unnecessary because the drop now cannot freely translate along the 
symmetry axis with the imposed symmetry condition for the free interface at the point 
where it meets the equatorial plane and the constraint of constant drop volume (e.g. 
Tsukada et al. 1993). However, the mathematically imposed symmetry conditions at 
the equatorial plane make it impossible to detect the existence of drop shapes that 
are asymmetric with respect to the equatorial plane. Asymmetric shapes have indeed 
been found previously in oscillating drops in a system having similar symmetry. As 
shown theoretically by Feng (1991) and Feng & Beard (1991), a neutrally buoyant 
conducting drop subjected to an external force that is symmetric with respect to the 
equatorial plane, due to an alternating electric field, can oscillate with odd-number- 
lobed shapes when excited through the subharmonic resonance mechanism. It would 
be impossible to find those odd-number-lobed shapes of forced drop oscillations if 
the symmetry conditions were imposed at the equatorial plane. Therefore, we avoid 
imposition of those symmetry boundary conditions along the equatorial plane by 
keeping the general axisymmetric problem domain as shown in figure 2. 

The Galerkin finite-element statement of the problem is completed by imposing 
boundary conditions on the mesh generation equations (3.1). Here, along the drop 
surface and the boundaries that are parallel to the drop surface in the computational 
domain, equal arc-length spacing of grid points is imposed with Dirichlet conditions 
on the relevant mesh generation equations. On the boundaries that are perpendicular 
to the drop surface in the computational domain, Dirichlet conditions are imposed 
with non-uniform Dr or D, so that grid points are compressed toward the drop 
surface where viscous boundary layers are expected (e.g. de Santos 1991). 

Once the mathematical system is completely described, Galerkin’s method is applied 
by weighting the governing equations (2.1) and (2.5) with biquadratic basis functions 
used for the electric potential and velocity expansions, (2.6) with linear discontinuous 
basis functions used for the pressure expansion, and (3.1) with the appropriate finite- 
element basis functions for the subparametric mapping (Christodoulou & Scriven 
1992). The equations weighted by the finite-element basis functions are then inte- 
grated over the entire physical domain, and the divergence theorem is utilized to 
lower the order of derivatives in the Laplace, momentum, and elliptic mesh gener- 
ation equations. The Galerkin method of weighted residuals transforms the partial 
differential system into a set of nonlinear algebraic equations with finite degrees of 
freedom, which is then solved iteratively by Newton’s method (cf. Ortega & Rhein- 
boldt 1970). At each Newton’s iteration, the resulting linear algebra system is solved 
by direct factorization of the Jacobian matrix with a modification of Hood’s frontal 
solver (Hood 1976; Walters 1980). 
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Critical to Newton's method is the initial estimate of the solution, which must be 

accurate enough to fall within the domain of convergence of the method. A convenient 
start-up solution or initial estimate is obtained here by solving the governing equations 
under conditions of very small E ,  and therefore vanishingly small Re and Ca. Thus, 
interfacial tension is relatively large compared to other forces so that the profile of the 
drop interface is well approximated by an arc of a circle. Thereafter, steady-solution 
families are tracked efficiently by first-order continuation (Riks 1972; Keller 1977) 
in E .  The Jacobian matrix becomes singular at turning points and, also, at certain 
bifurcation points in parameter space (cf. Iooss & Joseph 1990), and first-order 
continuation cannot lead to a converged solution. To continue along a solution 
branch past a turning point (which is the only kind of singular point encountered in 
this work), an arc-length continuation method (Keller 1977; Abbott 1978) is adopted. 
Thus, the critical values of E at turning points can be determined accurately. 

The size of the gap between the capacitor plates and the location of the asymptotic 
boundary S A s y M P  are chosen to be L = 20 and rA = 10, so that imposition of 
boundary conditions (2.3), (2.4), (2.12), and (3.2) at a finite distance from the drop 
induces virtually no difference between the computed solutions for Re = 0 and 
Taylor's asymptotic results when the drop takes the spherical shape as Taylor's 
discriminating function 

2 A + 3  
@ G Y(g2 + 1) - 2 +  3 ( Y 9  - 1)- 

5 A + 5  (3.5) 

approaches zero. The domain is divided into 600 elements with 2500 nodes. With the 
mesh used in this work, the total number of unknowns is 10545. Typically, five steps 
of Newton iterations suffice to bring the L2 norm of the error in the solution and 
residuals down to Increasing the size of the computational domain or number 
of elements deployed in the tessellation alters the location of the turning points in 
parameter space reported in the following sections by less than 1%. 

In this work, most computations for the theoretical analysis are performed with 
parameter values based on interfacial tension y = 0.001Nm-' and drop radius 
a = 0.001 m, corresponding roughly to the lowest interfacial tension and largest 
drops found in the experimental works of Torza et al. (1971) and Vizika & Saville 
( 1992). Thus, the largest possible deformations representing realistic situations can be 
conveniently examined. For the sake of simplicity, most results are computed here with 
A' = 1, except when the effects of A? are to be examined. The maximum strengths 
of the applied electric field used in the experiments (cf. Torza et al. 1971; Vizika & 
Saville 1992) were usually given in terms of u E ' ~  (here E' denotes dimensional electric 
field strength) as on the order of - lo8 V2 m-'. This value becomes 0.941 in terms 
of our dimensionless field strength E = E * ( ~ ~ a / y ) ' / ~  (with €0 = 8.854 x F m-'). 
Because typical values of y in the experimental systems are often greater than 0.001 
Nm-' (cf. Torza et al. 1971; Vizika & Saville 1992), E = 1 can be taken as the upper 
limit that is practically achievable under normal laboratory conditions. Hence, most 
of the results presented in this work are computed for E < 1. The values of dielectric 
constants are chosen to be either JC, = 5 and I C ~  = 2.5 or JC, = 2.5 and rci = 5,  which are 
representative of systems with liquids of low electrical conductivity, such as the castor 
oil and silicone oil used in the experiments (cf. Torza et al. 1971; Vizika & Saville 
1992). Furthermore, our present attention focuses mainly on the systems with W 2 10 
for Y < 1 and 92 < 0.1 for Y > 1, consistent with most experiments conducted 
so far. A few cases with parameter values outside the above-mentioned ranges are, 
however, computed in the theoretical analysis and briefly discussed for illustrative 
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purposes. On the other hand, when comparisons are made with experimental data in 
97, realistic values of fluid properties taken from the available experimental data are 
used in the computations. 

4. Solutions at the limit of creeping flow 
When inertia forces are not important and Re is set equal to zero, the Navier- 

Stokes equations reduce to the linear Stokes equation that describes axisymmetric 
creeping flows. By virtue of the simplicity of the Stokes equation, Taylor (1966) 
obtained analytical solutions for both the electric field and the creeping-flow field 
around spherical drops and then derived an asymptotic expression for the drop 
deformations. Maintaining the creeping-flow approximation, Ajayi (1978) extended 
Taylor’s linear asymptotic theory to include higher-order effects on drop deformations. 
These analytical results provide valuable guidance for further computational analysis. 
First of all, estimates of the locations of Sasymp, S+,  and S- can be obtained without 
tedious trial-and-error procedures, such that the numerical solutions yield essentially 
the same results as the analytical solutions for nearly spherical drops in an infinitely 
extended domain. Secondly, qualitative effects of physical factors are explicitly shown 
in the analytical formulas, so that the interpretation of complicated behaviour revealed 
by numerical solutions is made relatively easy. 

From Taylor’s asymptotic results we learn that, in the far field, the rate of decay for 
velocity is - l / r 2 ,  in a manner similar to the flow induced by a point-force dipole (e.g. 
Pozrikidis 1992). Thus, positioning the outer boundaries at dimensionless distance 10 
from the drop invokes only 1% errors in the local velocity, which is already of very 
small magnitude. On the other hand, the analytical solution for a leaky dielectric 
sphere in a uniform electric field shows that the deviation of the electric potential 
from that of the uniform field vanishes at a rate of l / r3  as r + co. Therefore, the 
results computed with the present problem domain of finite size are also representive 
of the generic situation with the infinitely extended domain. 

Setting Re to zero is implemented numerically by setting fluid density to zero. The 
computational results should therefore reasonably represent circumstances where the 
value of Re is very small. With Re = 0 and 

919W - 11A uiE2, 
lO(2 + W)2(1 + A) Ca _= poU/y  = 

the actual value of viscosity does not mathematically appear in the creeping-flow 
solutions. For most cases in this section where the viscosity ratio A is set equal to 
unity, the value of viscosity p = po = pi is set to 0.01 N s mP2 (ten times that of water). 

4.1. Creeping-$ow fields with signijicant drop deformations 
Representative creeping-flow fields and drop shapes, shown in figure 3, are qualita- 
tively consistent with the asymptotic theory of Taylor (1966). When 9’9 < 1, the 
electric shear stress induces a pole-to-equator flow (see figure 3a, b, d and f ) ,  whereas 
the reversed flow pattern is induced when 9.B > 1 (see figure 3c and e). When 
YW = 1, the mathematical system (2.1)-(2.4) governing the electrical current density 
becomes exactly the same as the one governing the electric displacement field, KVV.  
Hence, requiring continuity of the normal component of the electrical current density 
given by (2.4) also enforces continuity of the normal component of the electric dis- 
placement field. Consequently, no net surface charge should appear in this particular 
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FIGURE 3 (a-c). For caption see facing page 

circumstance, and electric shear stress at the drop interface vanishes as the value of 
9.92 approaches unity (cf. Taylor 1966). Evaluated under the condition of 9'93 = 1, 
Taylor's discriminating function (3.5), @ = (9 + l)2/B > 0, indicates that a prolate 
deformation always occurs in the absence of the flows induced by the electric shear 
stress. This makes Y B  < 1, corresponding to a pole-to-equator flow, a necessary 
condition for the drops to exhibit oblate deformations or remain the spherical shape, 
as seen from figure 3(a, b, d, f). 

For most liquid-liquid systems, B can vary by many orders of magnitude, whereas 
the variation of Y is in practice limited to 0.031 < Y < 32 (according to 2.5 < IC d 80). 
It is then roughly correct to expect prolate deformations when the drop is more 
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FIGURE 3. Electrohydrodynamic flows about a deformable drop at Re = 0 with pi = 
po = 0.01 NsmP2. By virtue of the problem symmetry, half of each plot shows the streamlines 
while the other half shows the velocity vectors. For illustrative purposes, the values of streamlines 
are chosen to be +0.01,f0.02, k0.05, +0.1,*0.15, +0.2,+0.25,*0.3, and f0.4. Depending upon the 
flow intensity in each individual case, not all the streamlines corresponding to the chosen values are 
necessarily shown in the plots. 

z 

conductive than the surrounding fluid, a phenomenon that becomes guaranteed when 
9 > 10.2 according to (3.5). For oblate deformations to occur, however, stringent 
conditions must be satisfied. Even with the most favourable values of B and 4 such 
as W +. 0 and A -+ 0, Taylor's discriminating function still demands that at least 
Y < 3.8 be satisfied. 

To quantitatively compare the computational results with the asymptotic predic- 
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tions, the computed maximum flow velocity and drop deformation parameter are ex- 
amined. By virtue of our definition of the characteristic velocity (2.15), the maximum 
flow velocity lulmax would remain at unit magnitude should the solutions quantita- 
tively agree with that obtained by Taylor (1966). Following Taylor’s definition, the 
deformation parameter is written as 

where zmax is the maximum distance between the drop surface and the centre of mass 
of the drop along the direction of the applied electric field and rmux is that in the 
direction perpendicular to the applied electric field. Expressed in terms of Taylor’s 
asymptotic results, an explicit relationship between D and E turns out to be 

E2.  9Ki@ D = D  - 
a - 16(2 + (4.3) 

Listed in table 1 are the values of the computed maximum velocity lulmax measured 
in units of U and the deformation parameter D with Re = 0 and &’ = 1, for 
various combinations of W and Y at several selected values of E .  For convenience of 
comparison, the asymptotic prediction of the deformation parameter given by (4.3) 
is also included. Excellent agreement between our computational results and those 
obtained from Taylor’s asymptotic theory (1966) is demonstrated by the fact that 
the computed maximum velocity is close to unity, as long as the drop deformation 
is insignificant, i.e. D - 0. When @ - 0, the computed drop profile maintains 
sphericity even at values of E’ as large as 10 where ID1 is found to be only about 

Once there is a noticeable drop deformation, however, the computed maximum 
velocity deviates significantly from unity, and the deformation parameter D deviates 
from D,. Hence, even at Re = 0, Taylor’s asymptotic results for creeping flows 
around undeformed drops become inaccurate in describing the flow field when drop 
deformations are noticeable. 

For a given field strength E, the drop deformation always appears to be more 
pronounced than that predicted by the asymptotic formula (4.3) when (uJmax > 1 and 
less pronounced when Iulmax < 1 (see table 1). This finding indicates that the drop 
deformation is directly related to the flow intensity for those cases. Deformations that 
are less pronounced than those predicted by Taylor’s asymptotic theory have rarely 
been observed in experiments. Torza et al. (1971) reported only more pronounced 
deformations. It is noteworthy, however, that some corresponding cases of oblate 
drops reported by Torza et aZ. (1971) were shown by Vizika & Saville (1992) to 
exhibit somewhat less pronounced deformations. According to our computational 
results, less pronounced deformations are likely to occur when the conductivity ratio 
W approaches unity. No experiments to date have been conducted with systems of 
fluids of such closely matched conductivity. Difficulties are expected in experimenting 
with values of W close to unity because of the need to accurately measure and control 
the fluid conductivities. 

4.2. Critical strength of the eZectricJield at turning points 
Figure 4 shows the evolution of the deformation parameter with E 2  for a few 
representative cases: W 2 10 with 9’ = 0.5, and W < 0.1 with Y = 2. Typically along 
each solution branch there is a critical strength of the applied electric field E, beyond 
which no steady solutions exist. However, more than one steady solution can exist at 
a value of E < E, - an example of multiple solutions for a given set of conditions in 
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E d Y Qi IUIm,, D Dll 

0.1 0.3956 2.0 -2.0 x 0.9972 1DJ < -4.93 x lop7 
0.10 2.0 -1.180 1.0023 -3.75 x lop3 -3.76 x lop3 
0.625 2.0 1.156 0.9983 2.38 x lop3 2.36 x 

1.8123 0.5 1.4 x 1.0005 JDI < 2.79 x lop6 
10.0 0.5 54.50 1.0244 1.09 x lo-’ 1.06 x lo-’ 
1.25 0.5 -1.281 0.9981 -3.42 x -3.41 x 

0.316 0.3956 2.0 -2.0 x 0.9972 ID1 < lop5 -4.93 x lop6 

0.625 2.0 1.156 0.9860 2.35 x 2.36 x lo-’ 
1.8123 0.5 1.4 x lop3 1.0006 ID1 < 2.79 x lop5 

1.25 0.5 -1.281 0.9879 -3.32 x lo-’ -3.41 x lo-* 

0.707 0.3956 2.0 -2.0 x lop4 0.9971 7.50 x -2.47 x lop5 

0.10 2.0 -1.180 1.0478 -3.78 x lo-’ -3.76 x lo-’ 

10.0 0.5 54.50 1.3922 0.1536 0.1063 

0.10 2.0 -1.180 1.2855 -0.2396 -0.1 881 
0.625 2.0 1.156 0.9203 0.1163 0.1179 
1.8123 0.5 1.4 x 1.0006 7.50 x lop5 1.40 x lo-‘ 

10.0 0.5 54.50 - - 0.5315 
1.25 0.5 -1.281 0.9112 -0.1534 -0.1705 

1 .o 0.3956 2.0 -2.0 x 0.9971 1.50 x lop4 -4.93 x 
0.10 2.0 -1.180 - - -0.3763 
0.625 2.0 1.156 0.8087 0.2297 0.2360 
1.8123 0.5 1.4 x lo-’ 1.0006 1.50 x 2.79 x lop4 

10.0 0.5 54.50 - - 1.063 
1.25 0.5 -1.281 0.7683 -0.2846 -0.34 12 

TABLE 1. Computed maximum velocity IulmaX and deformation parameter D 

the present nonlinear system. At the critical field strength E,, a mathematical singular 
point - the turning point - is approached, indicating the incipience of instability (cf. 
Iooss & Joseph 1990). Here the physical manifestation of the instability is that the 
stresses at the drop interface, arising from the electric field and the flow, become 
so strong that interfacial tension can no longer hold the interface together once 
the applied field strength is increased beyond E,. Electrohydrodynamic burst was 
observed by Torza et al. (1971) with both prolate and oblate drops at large electric 
field strength. Computations of the detailed behaviour of electrohydrodynamic burst 
with prolate drops were performed by Sherwood (1988) for cases of 9’ = 1 and 
W = 20 and 25, with the creeping-flow approximation and a boundary-integral 
technique. Electrohydrodynamic flows near the tips of highly elongated drops in a 
strong electric field were found to prevent the formation of conical tips, and the leaky 
dielectric drops tend to break into blobs. 

The critical field strength E, at turning points for leaky dielectric systems has not 
been previously determined by theoretical analyses or experimental measurements ; 
typical values of E, and corresponding deformation parameter D computed here for 
Re = 0 and .&‘ = 1 with pi = ,uo = 0.01 N s m-* are, therefore, listed in table 2 for 
future reference. Increasing the contrast of conductivity between the two fluids leads 
to an increasing amount of electrical charge at the drop interface for the electric field 
to act upon and therefore tends to result in more pronounced drop deformations at a 
given electric field strength and to reduce the critical field strength for the incipience 
of drop instability. Particularly, when the drop is much more conductive than the 
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FIGURE 4. Steady-state solution branches of families in the parameter space of D as a function 
of E 2  for W = 0.01 and 0.1 with Y = 2 and 9 = 10 and 100 with Y = 0.5 at Re = 0 and 
pi = p o  = 0.01 Nsrn-’. Solid curves represent computational results, whereas dashed lines are the 
asymptotic results given by (4.3). 

surrounding fluid for the case of Y = 0.5, the value of the critical field strength at 
the turning point approaches that for the electrohydrostatic situation of a perfectly 
conducting drop in a perfectly insulating fluid which is equal to 0.2879 (cf. Basaran 
& Scriven 1989; also Taylor 1964). Thus, for systems with large W (e.g. W 2 loo), the 
effects of electrohydrodynamic flows become inconsequential and the system behaves 
just as if an uncharged conducting drop in an insulating fluid were subjected to an 
external electric field. A similar insensitivity of the system to the value of W for 
W < 0.01 with Y = 2.0 is also found to be true for the inverse case where oblate 
drops are formed. For instance, the critical field strength is 0.6040 when W = 0.01 
and changes only slightly to 0.5931 when W = 0.001. 

To illustrate the general effects of viscosity ratio on the electrohydrodynamic 
behaviour, we evaluate the variation of the critical field strength E, corresponding 
to the change in the value of A. As shown in table 3, the values of critical field 
strength monotonically increase with the value of A. Hence, the drops become 
more vulnerable to the externally applied electric field when the interior fluid is more 
viscous than the surrounding fluid. Taylor’s asymptotic results indicate that relatively 
more significant effects of hydrodynamic stresses can be obtained by reducing the 
value of A’. Hence, a corollary may be derived that the hydrodynamic stresses due to 
fluid flows tend to enhance drop deformations, which is at least true in the common 
situations represented here, i.e. pole-to-equator flows with oblate drop deformations 
and equator-to-pole flows with prolate drop deformations. For the case of prolate 
drops with Y = 0.5 and W = 100, not much change occurs in E, when A varies from 
0.1 to 10. This finding is in accord with the fact that, when the fluid inside the drop 
is much more conductive than that of the surrounding phase, the stresses resulting 
from the electrostatic field play the dominant role, while the hydrodynamic stresses 
due to fluid flows are relatively insignificant. Therefore, the general system behaviour 
can actually be well approximated and described by the much simpler treatment of 
electrohydrostatic theory. If the electrical properties of the system are inverted such 
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d Y @ l ~ l m a x  E c  D c  D O  

0.10 2.0 -1.180 1.3569 0.7387 -0.3341 -0.2053 
0.01 2.0 -1.470 1.4711 0.6040 -0.3130 -0.1866 
0.001 2.0 -1.497 1.4785 0.5931 -0.3102 -0.1849 

10.0 0.5 54.50 2.2899 0.3860 0.4719 0.1586 
100.0 0.5 5072.0 2.5258 0.2939 0.3035 0.1185 

1000.0 0.5 5.01 x lo5 2.8357 0.2866 0.2956 0.1151 

TABLE 2. Values of critical field strength E,  and corresponding deformation parameter D, 

d = 100 and Y = 0.5 
P O  Pi ~2 E ,  Dc 

(Nsm-2) (Nsm-2) 

0.01 0.1 0.1 0.2928 0.3043 
0.01 0.01 1 0.2939 0.3035 
0.1 0.01 10 0.2954 0.3100 

9 = 0.01 and 9’ = 2 

0.01 0.1 0.1 0.5575 -0.3026 
0.01 0.01 1 0.6040 -0.3130 
0.1 0.01 10 0.7029 -0.3777 

TABLE 3. Variations of values of E ,  and corresponding D, with ,K 

that Y = 2 and &’ = 0.01, the electrohydrodynamic behaviour becomes much more 
sensitive to the variation of the value of .A’. Because the hydrodynamic stresses are 
essential to maintaining the oblate drop deformations against the prolate-inducing 
normal electric stress, the value of the viscosity ratio can significantly influence the 
electrohydrodynamic behaviour of oblate drops. 

Clearly, the linear relationship between the deformation parameter D and E 2  with 
a constant slope dD/d(E2) as predicted by (4.3) is valid only asymptotically for small 
drop deformations; it cannot adequately describe the electrohydrodynamic behaviour 
when drop deformations are noticeable, especially when a turning point is approached. 
Near a turning point, both JDI and (dD/d(E2)I rapidly increase with E 2 ,  until the 
solution branch passes the turning point and folds back to lower values of E 2 .  
Although seeking higher-order corrections through regular perturbation treatment 
(e.g. Ajayi 1978) points in the right direction, the inaccuracy of the perturbation 
formula with a limited number of expansion terms is expected to become much more 
serious in the vicinity of a turning point. Thus, fitting the experimental data with a 
straight line may be inherently inappropriate - a point that will be taken up further 
in $7. 

4.3. Special cases when asymptotic results may be valid at large E 
In those systems in which the fluid conductivities are closely matched, i.e. 9 = 0.625 
for Y = 2.0 and %’ = 1.25 for Y = 0.5, the drops are less deformed than would be 
predicted by (4.3), and the corresponding solution branches extend beyond E 2  = 1, as 
can be seen in figure 5. If a solution branch is always confined by the corresponding 
line given by (4.3), it can never reach any turning points based on topological 
connectivity in two-dimensional parameter space. Our solutions computed beyond 
E 2  = 1 do not indicate that any critical points will appear. At least within E < 1, the 
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FIGURE 5. Steady-state solution branches of families in the parameter space of D as a function of 
E' for 2 = 0.625 with 9' = 2 and 9 = 1.25 with Y = 0.5 at Re = 0 and p, = p o  = 0.01 Nsm-2. 
Solid curves represent computational results, whereas dashed lines are the asymptotic results given 
by (4.3). 

computed deformation parameter D varies almost linearly with E' and closely follows 
the corresponding asymptotic line, especially in the case with R = 0.625 and Y = 2.0, 
where the computational results and the asymptotic ones are almost identical. Thus, 
the behaviour of these special systems may be well described by the asymptotic results 
even at large strengths of the applied electric field. For the cases computed here, 
the drop deformations tend to grow indefinitely as field strength increases. Similar 
behaviour was shown by Sherwood (1988) for the case of Y = 1 and 9%' = 5, where 
the drop deformation was found to increase smoothly with the applied field strength 
without causing the drop to burst. The indefinite growth of drop deformations 
with applied field strength was also found in the perfectly insulating fluid systems 
when the contrast of dielectric constants becomes less pronounced (cf. Rosenkilde 
1969; Miksis 1981). However, the behaviour of leaky dielectric systems seems to 
be primarily determined by the ratio of conductivities, R, whereas in the perfectly 
insulating systems the behaviour is governed by the ratio of dielectric constants, Y.  

5. Solutions at finite Re 
The Reynolds number Re becomes non-zero when a finite value is given for fluid 

density. The characteristic density used here is chosen to be p = lo3 kgm-3, because 
most liquids have densities of the same order as that of water. Both Re = paU/p, 
and Ca = p o U / y  vary with E according to the change of U with E through (2.15). 
Explicitly, we can write 

Unlike the solutions for creeping flow, in which Re is set to zero by assuming that 
p = 0 where the actual value of viscosity has no role to play, the value of ,u in (5.1) 
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can significantly influence the value of R e  for specified values of p and a. Therefore, 
we examine the inertial effects by conveniently varying the value of p alone with the 
creeping-flow restriction removed. 

5.1. Cases when R e  d 0(1) 
If p = p o  = pi = O.OlNsm-', Y = 0.5 (i.e. ti, = 2.5 and tii = 5) ,  and 9' = 100, we 
have 

U = 1.06 x 10-3E'(ms-') and Re = 0.106E' (5.2) 
for a = 0.001 m and y = 0.001 N m-l. Because the critical field strength E, is found 
to be 0.2939 for Re = 0, the Reynolds number in this case remains small for all 
achievable electric field strengths. As expected, the results computed with Re # 0 are 
the same as those computed at the limit of creeping flow. If W is reduced from 100 to 
10 with everything else unchanged, Re = 0.625E'. Although increased somewhat from 
that given by (5.2), the value of Re in this case still remains small because E, = 0.3860 
as given in table 2. Hence, no noticeable differences are found between the results 
computed with Re # 0 and those at the limit of creeping flow. Therefore, for fluids of 
viscosity greater than 0.01 N s mP2, electrohydrodynamic behaviour of leaky dielectric 
drops with prolate deformations can be reasonably described by models using the 
creeping-flow approximation. 

Oblate drop deformations usually indicate relatively high flow intensity, because 
the oblate drop shape is necessarily maintained by the hydrodynamic stresses arising 
from the flow field against the normal electric stress that always tends to deform 
the drop into prolate shape (cf. Taylor 1966). K ,  = 5 and 
K *  = 2.5) and 3' = 0.1 with everything else unchanged as in obtaining (5.2), we 
have R e  = 2.041E2. Evaluated at E = 0.7387, the critical field strength for creeping 
flows, Re - 1; thus, inertial effects might emerge. Indeed, the critical field strength 
determined in this case with R e  # 0 shows a slight change to E, = 0.7376. Figure 6 
shows both the comparative streamline pattern of flow fields, and the distributions 
of tangential surface velocity vT along the drop interface for Re = 1.10 and Re = 0 
at E = 0.735. The distribution of tangential surface velocity ZIT is plotted versus the 
polar angle 8 measured from the negative z-axis. The differences between the cases 
of R e  = 1.10 and Re = 0 are in general too small to be noticeable in figure 6(a), 
except that the circulating eddy outside the drop is convected slightly upward for 
Re = 1.10 compared with that of Re = 0. The tangential surface velocity distribution 
for the case of Re = 1.10 (solid curve in figure 6b) also shows slight convection effects 
compared with that of Re = 0 (dashed curve in figure 6b). Reducing W from 0.1 to 
0.01 leads to Re = 2.729E2, only a slight increase in Re. Estimated at E = 0.6040, 
the critical field strength for creeping flows, we have Re - 1.6, and only a slight 
change of the critical field strength to E,  = 0.6035 is detected with corresponding 
Re = 1.647. Thus, as long as the viscosity of the fluids is greater than 0.01 N sm-', 
electrohydrodynamic behaviour of leaky dielectric drops with oblate deformations 
can also be described with the creeping-flow approximation, even though Re may 
reach values of about unity. 

For Y = 2.0 (i.e. 

5.2. Cases with R e  - O(10) and 9' = 0.5 
As expressed in (5.1), the value of R e  is sensitive to the variation of viscosity pi 
and po. For example, if p = pi = po varies by a factor of 10, Re should change 
by a factor of lo2. Figure 7 shows both the comparative streamline pattern of flow 
fields and distributions of tangential surface velocity vT along the drop interface for 
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FIGURE 6. Comparison between electrohydrodynamic flows at finite Re and at Re = 0 with 
pl = po = 0.01 Nsm-', 9 = 0.1, Y = 2, and E = 0.735. (a )  Streamlines about a deformable drop 
with the streamline values chosen to be kO.01, 50.02, k0.05, 50.1, kO.15, k0.2, k0.25, k0.3, and 
k0.4. ( b )  Tangential surface velocity uT versus polar angle 8 :  -, Re = 1.10; - - - -, Re = 0. 

Re = 9.29 and Re = 0 at E = 0.3855 with ,LL = 0.001 N s m-2, Y = 0.5, and W = 10. 
Compared with that at Re = 0, the drop tends to be a little more elongated in the 
field direction with Re = 9.29, as shown in figure 7(a). The circulating eddy inside 
the drop shifts toward the pole slightly, and flow outside the drop exhibits more 
noticeable convection effects. The tangential surface velocity oT distributions shown 
in figure 7(b) exhibit more significant convection effects with Re = 9.29 than that 
shown in figure 6(b). Although the critical field strength changes only slightly from 
E, = 0.3860 at Re = 0 to E, = 0.3867 at Re = 9.35, the deformation parameter D at 
critical field strength changes noticeably from D, = 0.4719 at Re = 0 to D, = 0.5012 
at Re = 9.35, consistent with the more pronounced prolate deformation at finite Re. 

With other parameters unchanged from those in figure 7, increasing 92 from 10 
to 100 reduces the flow intensity, because (2.15) indicates that U -+ 0 as 92 -+ co. 
The system is then expected to behave just like an uncharged conducting drop in an 
insulating fluid; it is again confirmed by our computation that there is no noticeable 
difference between the solutions at Re = 0.916 and Re = 0 when the critical field 
strength is approached. The value of the critical field strength hardly changes: 
E, = 0.2939 at Re = 0 and E, = 0.2938 at Re = 0.916. Furthermore, change in the 
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FIGURE 7. As figure 6 but with pi = p, = 0.001 N srnp2, 9 = 10, Y = 0.5, and E = 0.3855. 

In (b)  -, Re = 9.288; - - - -, at Re = 0. 

deformation parameter D at critical field strength is also negligible: D, = 0.3035 at 
Re = 0 and D, = 0.3059 at R e  = 0.916. 

To increase the flow intensity, 9 is then reduced to 1.8123, keeping other parameters 
unchanged from those in figure 7. In this case Taylor's discriminating function (3.5) 
approaches zero and the drop shape retains sphericity at the limit of creeping flows. 
Figure 8(a) shows that for fluids with viscosity p - 0.001 N s m-2, the drop exhibits 
mild prolate deformation at E = 1 with Re = 28.18. The flow field computed at 
finite Re also manifests some convection effects compared with that at Re = 0. The 
convection effects are more obvious in figure 8 ( b )  for the tangential surface velocity 
OT distributions. The deformation parameter evaluated at E = 1 with Re = 28.18 
is D = 2.52 x as shown in table 
1 at the limit of creeping flows. The loss of sphericity of a drop, in this case for a 
low-viscosity system, is definitely due to the finite-Re flow effects. 

Although the value of Re can reach up to O( 10) for a system with p = 0.001 N s m-* 
and Y = 0.5, the electrohydrodynamic behaviour of leaky dielectric drops is altered 
only moderately. Hence, cases with larger Re must be investigated in order to detect 
dramatic changes at finite Re. On the other hand, our results computed with finite 
Re suggest that the generic features presented with the creeping-flow analysis in $4 
are applicable to systems with a wide range of fluid property values. 

a significant increase from D = 1.50 x 
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FIGURE 8. As figure 6 but with pi = po = 0.001 NsmP2, W = 1.8123, Y = 0.5, and E = 1. 

In (b)  -, Re = 28.18; - - - -, Re = 0. 

5.3. Cases with Re 3 O(10) and Y = 2.0 
For a system with 9 = 2.0 and 93 = 0.3956, creeping-flow solutions indicate that 
undeformed spherical drops can be maintained at arbitrarily large electric field 
strength for ,X = 1. With ,u = 0.001 N s m-2, Re takes a value of 40.95 at E = 1; 
therefore, the flow is unlikely to be the same as that described by the creeping-flow 
solution. In addition to convection effects exhibited in the flow field, the drop shape 
with Re = 40.95, shown in figure 9(a), deviates noticeably from sphericity toward 
a prolate spheroid. Evaluated at E = 1 with Re = 40.95, the drop deformation 
parameter is found to be D = 4.44 x more than two orders of magnitude larger 
than D = 1.50 x at the limit of creeping flow. Even though the fluid systems 
are quite different, the electrohydrodynamic behaviour seen in figure 9( a) is similar 
to that in figure 8(a). The distributions of tangential surface velocity UT, shown in 
figures 8(b) and 9(b), suggest that the inertial effects at large Re tend to reduce the 
flow intensity. Less intensive flows give rise to weaker hydrodynamic stresses that are 
needed to maintain the drop sphericity against the prolate-inducing normal electric 
stress. Thus, drops consistently tend to be deformed into prolate shape with less 
intensive electrohydrodynamic flows as Re increases. 

If 2 is reduced to 0.1 with other parameters unchanged from those corresponding 
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FIGURE 9. As figure 6 but with pi = po = 0.001 Nsm-2, W = 0.3956, Y = 2, and E = 1.  

In (b)  -, Re = 40.95; - - - -, Re = 0. 

to figure 9, we have @ < 0 and drops are expected to exhibit oblate deformations, 
according to the asymptotic theory with the creeping-flow approximation. With 
p = 0.001Nsm-2, however, R e  can become as large as 204.08 if E reaches 1. 
The tendency toward prolate drop deformation when R e  becomes large, however, 
indicates subtle variations in electrohydrodynamic drop deformations with increasing 
E .  Indeed, the computational results show a remarkable phenomenon of drop shape 
turnaround from oblate deformation at low electric field strength to prolate-like 
deformation at the high field strength, as shown in figure 10. At low electric field 
strength E = 0.1, the drop is nearly spherical. The oblate deformation emerges as E 
is increased somewhat, following the trend shown by the solutions with the creeping- 
flow restriction. Then, with further increase of E ,  maximum oblate deformation is 
reached at E = 0.401. Thereafter, increasing E reduces the oblate deformation, and 
at E = 0.6447 the absolute value of D diminishes. However, the drop shape with D - 
0 is not quite spherical; rather its profile contains a small component of the diamond 
shape. Increasing E even further results in an elongation of the drop in the field 
direction. At E = 1, we have R e  = 204.08. Although D takes a positive value, the 
drop shape cannot be well described by a prolate spheroid because the drop surface 
bulges at the equator while the poles are stretched away from each other. The drop 
shape actually consists of significant numbers of higher-degree components of the 



312 J. Q. Feng and T. C .  Scott 

1.5 

1 .o 

r 

0.5 

0 

i 

FIGURE 10. Variation of drop shape with E when 9 = 0.1, 9’ = 2, and pi = po = 0.001 Nsm-’. The 
deformation parameter D takes values -0.00366, -0.0291, 0, and 0.145 at E = 0.1, 0.401, 0.6447, 
and 1, respectively. 

FIGURE 11. Steady-state solution branches of families in the parameter space of D as a function of 
E2 for d = 0.1 with Y = 2 and various values of p2 where p = pi = po.  

Legendre polynomials, especially P4, in addition to P2 and Po for the oblate-prolate 
type deformations. 

The parameter-space plot of D versus E 2  in figure 11 provides an overview of 
the evolution of drop deformations for various values of viscosity ,LL with B = 0.1 
and Y = 2. Roughly speaking, there is a transition zone bordered by the curves 
corresponding to p2 x lo4 = 0.05 and 0.07 with p in units of Nsm-*, wherein the 
behaviour of the solution branch switches from the normal increase in the oblate 
deformation with E 2  and folds back at a turning point to the drop shape turnaround 
from oblate deformations at small E to prolate-like deformations at large E .  When 
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FIGURE 12. Variation of drop shape with E when W = 0.01, 9’ = 2, and pi = p o  = 0.001 N sm-*. 
The deformation parameter D takes values -0.00490, -0.0305, 0, and 0.196 at E = 0.1, 0.369, 
0.5657, and 1, respectively. 

the value of p is reduced, the critical field strength E, at the turning point increases 
and, correspondingly, drops exhibit less pronounced oblate deformation at a given 
E.  Although not precisely determined here, a critical value of p2 x lo4 clearly exists 
in the interval (0.05, 0.07) below which there is no turning point to be encountered 
by any solution branches. The solution branches without turning points exhibit the 
drop shape turnaround phenomenon. At small values of E ,  the electrohydrodynamic 
flow is weak and Re is small. Therefore, the drop behaviour is essentially described 
by the creeping-flow solutions with the oblate deformation. With increasing E ,  the 
value of Re increases and the drop behaviour deviates from that described by the 
creeping-flow solutions. Hence, the maximum oblate deformation is reached at finite 
values of E ,  while the oblate deformations are then alleviated with further increase of 
E .  Eventually, drops are deformed into prolate-like shapes at large E ,  as is consistent 
with the general trend of drop behaviour at large Re. 

Reducing 9 from 0.1 to 0.01 is expected to enhance the flow intensity somewhat. 
Shown in figure 12 are a few representative drop shapes, which exhibit behaviour 
quite similar to that seen in figure 10, except that the maximum oblate deformation 
now happens at E = 0.369 and the deformation parameter D approaches zero at 
E = 0.5657. In addition, the prolate-like drop deformation is also more pronounced 
at E = 1. Just as in figure 11, the solution branches in the parameter space of D versus 
E 2  in figure 13 for W = 0.01 also manifest two different behaviours: folding back at 
turning points and drop shape turnaround from oblate to prolate-like deformations. 
Although the variation of D seems to be more sensitive to E 2  when W = 0.01 than with 
the corresponding value of p when 3 = 0.1, the transition zone wherein the solution 
branches switch qualitative behaviour is still bordered by the curves corresponding 
to p2  x lo4 = 0.05 and 0.07, with p in units of N s ~ - ~ .  

According to the present computational results, the phenomenon of drop shape 
turn-around occurs only in systems with low-viscosity fluids where Re can reach large 
values. Interestingly, the phenomenon of a drop with oblate deformation at low E 
eventually turning into a prolate shape with increasing E was also reported by Vizika 
& Saville (1992) under a totally different mechanism that seemed to result from the 
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FIGURE 13. Steady-state solution branches of families in the parameter space of D as a function of 
E 2  for d = 0.01 with Y = 2 and various values of p2 where p = pi = po. 
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FIGURE 14. Equipotentials of electric field about a deformable drop at pi = po = 0.01 N sm-’, 
Y = 0.5, and E = 0.25, for ( a )  d = 10 and ( b )  d = 100. For illustrative purposes, the equipotential 
values are chosen to be 0, fO.O1, f0.05, kO.1, 50.2, f0.3, +0.4, and f0.5. 

variation of liquid conductivity with E.  In their experiments, all systems involve very 
viscous liquids, and only creeping flows at very low Re could be generated. 

6. Electric field distribution 
Because electrohydrodynamics involve both the electric field and flow field, the 

distribution of electric field around the leaky dielectric drops is of fundamental 
interest. Figure 14 shows the equipotential contours, i.e. the contours of constant 
values of electric potential, around the prolate drops in systems with Y = 0.5 and 
p = 0.01 N s m-* for 2 = 10 and 100. In the case of W = 10, the drop interface does 
not quite conform to any equipotential contours, and substantial electric field exists 
inside the drop (see figure 14a), because the charges accumulated on the interface are 
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FIGURE 15. Equipotentials of electric field about a deformable drop at pi = p,, = 0.01 N sm-2, 
Y = 2, and E = 0.5, for (a) W = 0.1 and ( b )  B = 0.01. The equipotential values are 0, fO.1, f0.2, 
k0.3, f0.4, k0.5, f0.6, f0.7, f0.8, k0.9, and f1. 

contributed from both inside and outside the drop, with a relatively small conductivity 
difference. If W is increased to 100, the interior fluid is much more conductive than 
the exterior one, and the drop surface approaches an equipotential state, as shown 
in figure 14(b). At a given field strength, because the net electric stresses at the drop 
interface are determined by the field strength difference on the two sides (see e.g. (2.8) 
and (2.9)), a drop in the system with 9 = 10 is subjected to relatively weak electric 
stresses and therefore is deformed less than the one in the system with W = 100. 

The equipotential contours around the oblate drops in systems of 9 = 2.0 and 
p = 0.01 Nsm-2 with 9 = 0.1 and 0.01 are shown in figure 15. For those systems 
with 9 c 1, the fluid outside the drop is relatively more conductive and the electric 
field strength is higher inside the drop. A drop in the system with W = 0.1 (see figure 
15a) is deformed less than that in the system with 9 = 0.01 (see figure 1%) at a given 
electric field strength. 

Noteworthy here is that the cases shown in figure 15 represent merely the inverse 
systems of those shown in figure 14. Hence, dramatically different electrohydrody- 
namic behaviour can be obtained by simply inverting the system, namely, by turning 
the inside phase out, a fact also observed in the numerical results obtained by Tsukada 
et al. (1993). With a more conductive fluid outside the drop, a much stronger gradient 
of electric potential is generated along the drop interface. From the expression of 
the Maxwell stress tensor (2.9), the tangential electric stress at the drop interface that 
drives the electrohydrodynamic flow is determined by the product of the tangential 
and normal components of the local electric field. Physically, the normal component 
of electric field that changes abruptly (or jumps) at the interface corresponds to the 
net surface charge accumulation, whereas the tangential electric field acts upon the 
charges at the interface to generate the shear stress that drags the fluid into motion. 
Hence, significant electrohydrodynamic flows are expected to occur in a two-phase 
fluid system if it is arranged so that the more conductive fluid serves as the continuous 
phase. This fact may be quantitatively illustrated by examining the value of 

which represents the normalized intensity of flow induced by the electric driving force. 
Table 4 shows the variation of the value of UE-2 with W at Y = 0.5 with K ,  = 2.5 

and at Y = 2 with K ,  = 5 for p = p, = pi = O.O1NsmW2 and y = 0.001Nm-'. As 
expected, the flow intensity decreases as W increases for a given value of E.  When 
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9 9  UEW2 
(m s-') 

0.5 10 6.25 x 10-3 
0.5 100 1.06 x 10-3 
0.5 1000 1.12 x 10-4 
0.5 m 0 
2 0.1 2.04 x lo-* 
2 0.01 2.73 x lo-* 
2 0.001 2.80 x lo-* 
2 0  2.81 x lo-* 

TABLE 4. Variations of value of U E P 2  with 99. 

the drop is more conductive than the surrounding fluid, the flow intensity decreases 
at a rate - l/% for % > 100. If the surrounding fluid is more conductive than that 
inside the drop, however, the flow intensity becomes insensitive to the variation of 2. 
Thus, the contrast of conductivities in a system with more conductive surrounding 
fluid is not expected to significantly affect the electrohydrodynamic flow intensity. 
However, some overall electrohydrodynamic behaviour of drops, such as the critical 
electric field strength and drop deformations, can still be influenced by the value of 
W through the change in electric field distribution. 

7. Comparison with experimental data 
From the data presented by Torza et al. (1971) and Vizika & Saville (1992), we 

found that all experiments were conducted with systems involving liquids that are 
much more viscous than water. Even for the cases where drops of distilled water 
were used, the viscosities of the liquids used as the surrounding phase were so large 
that the values of 4 always became greater than lo3. The highly viscous liquids 
were preferred as the surrounding fluid in the experiments, because they hinder the 
undesirable migration of drops due to slight imbalance of forces. Therefore, all the 
available experimental information was obtained from systems that are expected to 
be well described by the theory at the limit of creeping flow. The experiments recently 
reported by Tsukada et al. (1993) also correspond to low-Reynolds-number flows; 
therefore, their computations were actually restricted to the limit situation of creeping 
flow. 

As presented in 54.2 for the creeping-flow situations, the solution branches in the 
parameter space D versus E 2  usually display an increase in both ID1 and ldD/d(E2)1 
with E 2  up to the point at which the turning points are reached. The corresponding 
asymptotic lines with constant dD/d(E2) often underestimate the deformation pa- 
rameter D for those systems formed in the experiments. The discrepancy between 
the computational results (solid curves) and those predicted by the asymptotic theory 
(dashed lines) is negligible when ID[ is small, e.g. D < 0.05 for prolates and D > -0.1 
for oblates; it becomes noticeable when ID( exceeds 0.1 and increases significantly 
thereafter. In general, the discrepancies for prolate deformations are greater than 
those for oblate deformations. According to the computational results, the exper- 
imental data obtained with a given system should inherently follow a nonlinear 
relationship between D and E 2 .  Discrepancy is almost inevitable when the data are 
fitted to a straight line and then compared with the corresponding asymptotic line. 
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FIGURE 16. Comparison between theory and experiment for the case of a water drop in castor oil: 
-, computational results; - - - - , prediction of asymptotic theory; . . . . . ., computations with 5% 
reduction of y ;  and 0, experimental data. 

A qualitative explanation for the significant discrepancy between experimental 
measurements reported by Torza et al. (1971) and Taylor's asymptotic theory (1966) 
might be that most of the experimental data were acquired at large E close to the 
critical field strength E,. Based on our results given in table 2, ID,/ can usually be 
greater than ID,] by a factor of two to three. On the other hand, the improved 
agreement between Taylor's asymptotic theory and experiment found by Vizika & 
Saville (1992) might then be naturally explained by the fact that most of their 
experimental data were acquired at values of E much lower than the critical field 
strength, and therefore ID[ was kept small. Indeed, the data points shown in figure 
7 of the paper by Vizika & Saville (1992) for the deformation measurements in 
oscillatory fields fall mostly within the regime of ID,[ < 0.05, and excellent agreement 
was found there with the asymptotic theory. 

In this section, we compare our computational results and those representative 
raw data points shown by Vizika & Saville (1992) for steady-field cases. Follbwing 
the convention established by previous authors, we use E to denote the dimensional 
strength of the applied electric field in units of kVcm-', unless otherwise specified. 
The abscissa in the plots below then represents aE2 in units of k V2 cm-', as calculated 
by multiplying our dimensionless E 2  by 10-8y/~o. Only a limited number of raw data 
points can be found in the paper by Torza et al. (1971), although they measured the 
slopes dD/d(uE2) for a large number of systems. This restricts our direct comparison 
with their experimental results to only a couple of cases. A comparison of two sets 
of experimental data was presented by Tsukada et al. (1993), along with their own 
numerical solutions, which is unnecessary to repeat here. 

7.1. Cases of prolate drops 

Figure 16 shows the plot of D versus aE2(kV2cm-') for the case of a water drop 
in castor oil. According to the data given by Vizika & Saville (1992), we have 
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9' = 0.057 with ti, = 4.45, -42' = 1400 with pa = 1.4N s m-2, and 1' = 0.0168 Nm-'. 
None of the exact values for W were given by Vizika & Saville (1992); they simply 
put W > lo4 for this system in a table. We choose a value of W = 1500 for the 
convenience of computations; the value so chosen is not expected to make any 
difference in the computational results, as we discussed previously. As expected, the 
experimental data for this case deviate from the (dashed) asymptotic line in the same 
direction as the (solid) computational curve does and, therefore, agree quite well with 
the computational results. Yet, consistently, most experimental data points are still 
located slightly above the solid computational curve. By simply reducing the value 
of interfacial tension y by 5%, as also shown in figure 16 with the dotted curve, the 
agreement between the computational curve and experimental data becomes almost 
perfect. In contrast, a more than 25% reduction of the interfacial tension would be 
needed to bring the asymptotic line to reasonably fit the experimental data for this 
case. The accuracy of interfacial tension measurements is not clearly stated in the 
literature. Therefore, at this point, only suggestions can be made based on the present 
observation. 

Just like the system shown in figure 16, many experiments with prolate drops 
were conducted with systems in which a much more conducting drop in a relatively 
insulating fluid (i.e. d > lo4) was subjected to an electric field, which corresponds to 
a generic electrohydrostatic situation. Theoretically, the behaviour of these systems 
can be well described by one solution branch in terms of a dimensionless parameter 
K,E', with E now denoting the dimensionless field strength as defined in 92. Indeed, 
as shown in figure 17, computational curves for three different experimental systems 
fall on top of each other when converted to the dimensionless plot of D versus K,E*. 
Scattered around the computational curve are the relevant experimental data points, 
including those shown in figure 16 and three additional sets of data that are also found 
in figure 5 of the paper by Vizika & Saville (1992). These three additional experimental 
systems correspond to a water drop in silicone oil (300P) (where Y = 0.035 with 
K, = 2.75, Ldt' = 3 x lo4 with pa = 30NsmV2, and y = 0.0283Nm-'), a drop of 
water + Triton in silicone oil (125P) (where Y = 0.035 with K~ = 2.75, -4 = 357 
with p, = 12.5Nsm-', and y = 0.00425Nm-'), and a drop of water + Triton in 
castor oil (where Y = 0.057 with K, = 4.45, -4 = 40 with po = 1 . 4 N ~ m - ~ ,  and 
y = 0.0015 N m-'). Most experimental data points are located above the asymptotic 
line and are better represented by the computational curve, except for the data set for a 
drop of water + Triton in silicone oil (125 P), which shows remarkable agreement with 
the asymptotic line. Theoretically, the asymptotic line cannot be very accurate when 
the deformation parameter D exceeds the value 0.05. If this were attributed to the 
error in the measurement of interfacial tension, an increase in the value of interfacial 
tension by about 20% would be needed to bring the data to fit the computational 
curve. As a side note, if averaging is taken over all the data points across the different 
systems, a fortuitous agreement occurs between experiments and the computational 
results. The theory shows that the differences in the liquid properties between these 
different systems should not affect the experimental results in the non-dimensional 
parameter space, as long as the conductivity ratio W > 100. The finding that 
agreement between the theory and experiment improves by averaging across various 
systems suggests the cancellation of some system errors such as different interfacial 
tension measurements obtained for different systems. 

According to the computational results shown in this work, the drop behaviour in 
the systems with large values of W is actually well described by the electrohydrostatic 
theory, which deals with no fluid flows. This finding is consistent with (2.15), which 
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FIGURE 17. Comparison between theory and experiment in the non-dimensional parameter space 
of D versus K,E' For the extreme case of large 9: -, indicates computational results; - - - -, 
prediction of asymptotic theory; and 0, 0, 0, x, experimental data for the cases of a water drop in 
castor oil, a water drop in silicone oil (300P), a water + Triton drop in silicone oil (125P), and a 
water + Triton drop in castor oil, respectively. 

suggests vanishing characteristic velocity as W -P 00. It is interesting to note that 
the experiments with the systems of 9 > lo4 e.g. those shown in figures 16 and 
17 along with others published by Torza et al. (1971) and Vizika & Saville (1992), 
were conducted to investigate the electrohydrodynamic behaviour of drops. All 
the experimental data were fitted to straight lines for the comparison with that 
predicted by the asymptotic electrohydrodynamic theory of Taylor (1966), while the 
more relevant electrohydrostatic theory of Taylor ( 1964), which clearly indicates the 
existence of critical field strength and the general nonlinear behaviour of the solution 
branches in the parameter space, was not considered. 

As an exception to the extreme situation shown in figure 17, the experimental data 
set found in figure 6 of the paper by Torza et al. (1971) for a drop of castor oil in 
silicone oil is examined here. In this system, Y = 0.44 with K ,  = 2.77, At' = 0.83 with 
p, = 5.4NsmP2, and y = 0.0055Nm-'. The conductivity ratio is given as W > 30, 
and we simply use W = 30 for our computations. Figure 18 shows the computational 
curve and experimental data for this particular case in terms of dimensional parameter 
aE'(kV2cm-'), as used in figure 16. Again, the nonlinear relationship of D and aE2 
predicted by the computational (solid) curve matches the experimental data much 
better than the asymptotic (dashed) line. 
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FIGURE 18. Comparison between theory and experiment for the case of a castor oil drop in silicone 
oil: -, computational results; - - - -, prediction of asymptotic theory; and 0, experimental data. 

7.2. Cases of oblate drops 
Not many raw experimental data can be found in the literature for the oblate drops. 
Vizika & Saville (1992) presented two cases in figure 6 of their paper. However, one 
of those cases behaved abnormally owing to problems with controlling the liquid 
conductivity. Here we compare our computations with the normal one, which was 
apparently free from system problems. This is the case of a drop of silicone oil 
(125P) in castor oil + Triton, where Y = 2.04 with K ,  = 5.6, .A' = 0.08 with 
po = 1.0NsmP2, and y = 0.00425Nm-'. Because .98 < was given for this 
system, a value of .98 = 0.001 is chosen for the computations. The results are 
presented in figure 19(a). The experimental data show slightly less pronounced 
drop deformations than that predicted by the (dashed) asymptotic line. The only 
situations with very low Re where the computational results show less pronounced 
drop deformations than the asymptotic prediction have been found in $4 when 
the values of conductivities become very close, i.e. W - O(1). For the present 
case where 92 < low4, the computational curve consistently predicts greater drop 
deformations than the asymptotic theory. Within the region covering the data set, 
however, the differences among the computational results, the experimental data, 
and the asymptotic line remain small. Therefore, the agreement between theory and 
experiment appears to be reasonably good. 

Another data set for oblate drops is found in figure 6 of the paper by Torza 
et al. (1971) for a drop of silicone oil in castor oil - merely an inverted system 
from that shown in figure 18. For this case, Y = 2.274 with K ,  = 6.3, .A' = 1.204 
with p, = 6 . 5 N ~ m - ~ ,  and of course y = 0.0055Nm-'. The conductivity ratio is 
then given as W < 0.0333, and we simply use 9t = 0.0333 for our computations. 
Figure 19(b) shows that for this case the experimental data consistently represent 
greater oblate deformations than those predicted by both the (solid) computational 
curve and (dashed) asymptotic line. Although the computational curve tends to bend 
away from the asymptotic line toward greater drop deformations with increasing 
electric field strength, it does not go far enough to completely fit the experimental 
data in the region where the data points appear. All that can be said is that the 
computational curve indeed suggests the general trend of greater oblate deformations 
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FIGURE 19. As figure 18 but for the case of (a) a silicone oil (125P) drop in castor oil + Triton, 
(b)  a silicone oil drop in castor oil: -, computational results; - - - -, prediction of asymptotic 
theory; and 0, A, experimental data. 

shown by this set of experimental measurements. Of course, the agreement can be 
improved by reducing the value of interfacial tension. 

8. Concluding remarks 
By means of the Galerkin finite-element method, the nonlinear free-boundary 

problem of electrohydrodynamics of a neutrally buoyant drop in an immiscible fluid 
subjected to an electric field is solved numerically within the framework of the 
leaky dielectric model. Excellent agreement between the numerical solutions and 
the asymptotic solutions of Taylor (1966) for creeping flow around nearly spherical 
drops has been found when both the Reynolds number Re and drop deformations 
from the spherical shape are small. Significant differences between the computational 
prediction and that of the asymptotic theory have been revealed when the drop 
deformations become noticeable, even in the limit of creeping flows. It has been 
shown computationally that the solution branches, represented in the parameter 
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space of the drop deformation parameter D versus the square of the dimensionless 
strength of electric field E ,  usually deviate from the corresponding asymptotic lines 
toward larger deformations with the slopes ldD/d(E2)1 also increasing with E 2 .  

Critical field strength E, at mathematical turning points in the parameter space has 
been determined computationally with an arc-length continuation method. Physically, 
those turning points signal the stability limits of drops stressed by an electric field 
(Iooss & Joseph 1990; Ungar & Brown 1982). No steady solution can be obtained 
locally if the externally applied electric field is increased beyond the critical field 
strength. The solution branches fold back at the turning points to lower values 
of the field strength, and thereby more than one steady solution exists for a given 
field strength E < E,. Solution branches folding back at turning points have been 
commonly found in the electrohydrostatic analyses of electrified drop systems, where 
either both fluids are regarded as perfectly insulating or the drop is considered 
to be highly conducting with a perfectly insulating fluid outside (cf. Carton & 
Krasucki 1964; Taylor 1964; Rosenkilde 1969; Miksis 1981; Adornato & Brown 
1983; Basaran & Scriven 1989). The similar behaviour in the electrohydrodynamic 
situation of leaky dielectric drops has not been explicitly discussed until the present 
work. The computational results presented here show that the solution branches 
representing both prolate and oblate drops can encounter turning points in the 
parameter space. 

Much like the situation of a dielectric drop in an insulating fluid with a small 
difference between the inside and outside dielectric constants, some solution branches 
of leaky dielectric drop systems, especially those with small differences between the 
inside and outside conductivities, have been found to indicate drop deformations 
growing indefinitely with the electric field strength without encountering turning 
points. A similar phenomenon of drop deformation smoothly increasing with electric 
field strength was also shown by Shenvood (1988) for the case with relatively small 
differences in both dielectric constants and conductivities. In some special situations, 
the computationally determined solution branches appear to almost coincide with 
those predicted by the asymptotic theory even at large electric field strength. Because 
many parameters in the present mathematical system can influence the electrohy- 
drodynamic behaviour, exploration of all possible categories of solution branches in 
various parameter spaces demands quite involved work and is not pursued in this 
paper. 

By virtue of the generality of the Galerkin finite-element scheme used in this work, 
electrohydrodynamic flows at finite Reynolds number Re have also been investigated. 
For most liquid-liquid systems, the inertial effects that come with the flows at finite 
Re alter the electrohydrodynamic behaviour moderately from that in the creeping- 
flow situation. If the viscosities of both the fluids inside and outside of the drop 
are reduced to the level of that of water, however, our computations have predicted 
a dramatic change in the electrohydrodynamic behaviour : certain solution branches 
that correspond to oblate drop deformations at low Re turn around at finite values of 
E with fairly large values of Re toward prolate-like drop deformations with increasing 
E .  A general tendency seems to exist for the drops with electrohydrodynamic flows of 
large Re to be deformed into prolate-like shapes. This tendency toward prolate-like 
drop deformations has also been exhibited at large Re in the systems where the drops 
are expected to remain spherical at arbitrarily large E, according to the results with 
the creeping-flow approximation. 

All solutions obtained in this work correspond to symmetric drop shapes with 
respect to the equatorial plane, although the mathematical system is set up to be 
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general enough to allow the asymmetric shapes to be computed. Still, this does not 
mean that the possible existence of the asymmetric shapes should be excluded. As is 
usually true of nonlinear systems, surprising phenomena may be detected when new 
regions in parameter space are explored, because of the lack of general mathematical 
solutions. Detecting asymmetric shapes of steady drops with electrohydrodynamic 
flows may become an interesting subject for future research. 

All liquid-liquid systems used in the experiments so far involve large viscosities, 
and only low-Reynolds-number flows can be generated (Torza et al. 1971; Vizika & 
Saville 1992; Tsukada et al. 1993). Accordingly, the present computational findings 
with flows at relatively large Re have to await future experimental verification. At 
present, only those computational results that correspond to creeping flows can be 
compared with experiments. The nonlinear relationship between D and E 2  revealed 
by the computations appears to be capable of explaining most discrepancies between 
the experiment and asymptotic theory reported in the literature. Strictly speaking, 
most experimental data should follow the nonlinear curves in the parameter space of 
D versus E 2  rather than the asymptotic line. Discrepancy is inevitable if one attempts 
to fit experimental data to a straight line and then to compare it with the asymptotic 
line. 

The computational analysis presented here suggests that future experimental study 
should focus on measurements of large drop deformations (e.g. D 3 0.1) because the 
deviation from the asymptotic line and the nonlinear relationship between D and E2 
are expected to become obvious. In addition to verifying theoretical prediction, the 
measurements of critical field strength and the corresponding drop deformations may 
provide accurate information for identifying errors in the experimental procedures. 
Theoretically, with charge convection effects neglected, only the conductivity ratio 
W can influence the electrohydrodynamic behaviour of drops, while the absolute 
values of the conductivities have no role to play. For those systems where one fluid 
is much more conductive than the other, accurate measurements of conductivities 
are unnecessary, because it is computationally shown that the electrohydrodynamic 
behaviour becomes insensitive to the actual value of 92 when one fluid is more 
conductive than the other by a factor of lo2. The values of dielectric constants and 
interfacial tension, however, can easily affect the location of the data points in the 
parameter space. To observe significant electrohydrodynamic flow effects, systems 
with the outer phase more conductive than the inner phase are preferred, especially 
with drops exhibiting oblate deformations. As also suggested by Vizika & Saville 
(1992), experiments with a wider range of fluid properties are useful to further verify 
the theory based on the leaky dielectric model. 

The present work extends Taylor’s (1966) linear asymptotic results to include 
nonlinearities arising from large drop deformations and finite fluid inertial effects. In 
our work, only essential physical mechanisms that allow tangential electric stress to 
appear for driving electrohydrodynamic flows are considered. Without including other 
complications, the present mathematical system and the theoretical results derived 
therefrom are self-consistent. However, some additional physical mechanisms may 
also influence the experimental results for electrohydrodynamic behaviour of leaky 
dielectric drops, as suggested by previous investigators (cf. Vizika & Saville 1992). 
Among others, the effects of charge convection at the drop interface may be included 
as a natural extension of the present work. Because no sources of net charge can be 
traced along a particle path line in the present problem, charge convection by flow 
field naturally disappears in the bulk region (cf. Melcher 1981). Only at the drop 
interface may charge convection by fluid flow become effective. Without actually 
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obtaining the final mathematical solution, Torza et al. (1971) examined theoretically 
the convection of charge at the interface and concluded that such effects could not 
play an important role in their experiments. Vizika & Saville (1992) also found no 
obvious evidence of charge convection effects. All these previous investigators studied 
charge convection based on qualitative considerations; quantitative investigation, 
which relies on the solution of a nonlinear mathematical system, is difficult with the 
conventional mathematical tools. The computational scheme described in this work 
appears to be quite suitable for such a nonlinear analysis. Therefore, the effects of 
charge convection should be added to the list of future research subjects in the area 
of leaky dielectric drops. Moreover, including charge convection may provide better 
opportunities for asymmetric drop shapes with respect to the equatorial plane to 
appear because of additional nonlinearities. 

Within the present mathematical framework, thorough theoretical analysis is in 
principle enabled by the numerical scheme described herein. However, the large 
set of parameters involved in the present problem makes the comprehensive study 
of every detailed aspect prohibitively tedious and costly. As an initial step in the 
nonlinear analysis of this electrohydrodynamic problem, we have computed various 
solutions that are considered to be representative of most realistic circumstances. 
The objective of this work is to provide an overview of the general nonlinear be- 
haviour of leaky dielectric drops, which may be useful to guide more systematic 
experimentation and further detailed theoretical studies. Since Ajayi’s attempt (1978) 
to extend Taylor’s linear asymptotic model to include higher-order terms failed to 
fully resolve the quantitative discrepancy between the theory and experiment, it has 
been assumed that nonlinear solutions cannot provide important insights into basic 
electrohydrodynamic behaviour of drops. Nevertheless, the results of finite-element 
computations presented in this work clearly demonstrate that significant progress in 
understanding the electrohydrodynamic behaviour of leaky dielectric drops can be 
made with systematic nonlinear analysis. 

The authors are grateful to the referees for their valuable and constructive com- 
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